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Reduced October rainfall likely 
indicates a delayed start to 
the rainy season and could 

limit the ideal timing of crop 
development throughout the 
growing season (Oct. - June).

Map 1: Decrease in October 
Precipitation May Challenge 

Crop Development

Background

From 2000 conditions, average annual temperature is expected to increase 
by ~1°C, and the wettest years are projected to be ~3.6% (~40mm) drier 
in 2035 (middle of the road scenario, SSP245 – Figure 1). Models show 
uncertainty for the magnitude of change for Malawi due to interannual 
variability and the Intertropical Convergence Zone’s unpredictability.

Malawi’s economy depends heavily on agriculture (>25% GDP), which is 
very sensitive to precipitation and temperature variation. Crop failure has 
occurred more than 4 times a decade in some areas. Seventy percent of 
the population lives in poverty, and 51% do not meet daily calorie needs.
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Malawi’s limited resilience to water shocks means even small 
shifts impact food and energy production. Malawi will likely 
continue to need humanitarian aid.
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ENERGY: Drier wet years reduce periods that refill hydropower reservoirs
Hydropower provides 95% of electricity. Variation in annual rain 
complicates planning and supply. Years with excess rain that were used 
to refill reservoirs may decrease (Figure 1). Only 15% of the population is 
connected to the power grid, and lack of electricity limits industrial growth.

FOOD SECURITY: Increased dryness makes subsistence 
agriculture even more difficult

Low yield, including crop failure, increases malnutrition. Rainfed 
backyard and smallholder farms feed 80% of Malawi’s population, with 
maize the dominant staple crop. A projected increase in seven-day dry 
spells during the rainy season and delayed onset of the rainy season in 
October may impact crop growth (Map 1). 

Waterborne and sanitation-related disease may counteract adequate 
nutrition by compromising  the ability to absorb nutrients. These 
illnesses account for 53% of outpatients in hospitals.

Rural households are, on average, 20 km from a paved road. Limited 
transportation infrastructure makes accessing alternative food 
sources difficult in rural areas.​

-12% -42%

Change in October 
Average Precipitation

Figure 1: Wet Years Become 
Drier, Increasing Fragility

Projections for 2025-2045 indicate that high precipitation 
years may be drier than the wettest years from 1990-2010. 

Lower amounts of rain could strain food production and 
make hydropower less reliable.
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Southern Malawi, where the largest 
precipitation decrease is projected, 
already has the highest percentage 

of extreme food insecurity.
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DATASETS: Historical Weather Data from ERA5 [1990-2023] - daily values for precipitation and average temperature . Future Weather Data from CMIP6 downscaled by NASA Earth Exchange Global Daily Downscaled Projection 
(NEX-GDDP-CMIP6). Scenario: SSP245 and/or SSP585. 17 models: ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5,CMCC-ESM2, FGOALS-g3, GISS-E2-1-G, MIROC-ES2L, MPI-ESM1-2-HR, MRI-ESM2-0, NESM3, NorESM2-MM, 
CNRM-ESM2-1, EC-Earth3-Veg-LR, GFDL-ESM4, INM-CM5-0, IPSL-CM6A-LR, KIOST-ESM 

CALCULATIONS: Baseline (sometimes called “normal”) and representative future values for each year of interest are calculated using 21-year time intervals around the date of interest. Our historic normal is based on the year 
2000 (1990-2010) using ERA5 data. To bias correct future values, we calculate the difference or ratio between NEX-GDDP-CMIP6 modeled future [2035 (2025-2045) and/or 2050 (2040-2060)] and modeled historic [2000 (1990- 
2010)] values and add this difference to the historic baseline value or multiply the ratio by the historic baseline value for each metric of interest. All calculations are spatially distributed (quarter-degree grid cells) and aggregated 
as the final step. 

Important note: Values reported are median values based on the 17 model outputs. Error bars are the 95% confidence interval around the median.

Precipitation
•	 Mean Annual Precipitation: The sum of the total daily precipitation for each year, averaged over the time period of interest.
•	 Normal Monthly Precipitation: The sum of the total daily precipitation within each month for each year, averaged over the time period of interest.
•	 Total Monthly Precipitation: The sum of the total daily precipitation within each month for each year.
•	 Consecutive Dry Days: The number of 7-day periods in a row that received less than 1 mm of rain for each year, averaged over the time period. To calculate the average frequency, we normalized run lengths of 7 or more 

days to multiples of 7-day streaks. Each run length was then divided by 7 to determine how many full 7-day streaks were in that particular run length, and the result was floored to the nearest whole number. The multiple 
of 7 was then multiplied by its frequency of occurrence within the given year. To calculate the frequency within a country, we took the maximum frequency within the country for a given year, then averaged over the 
timespan (including years with a frequency of 0) to obtain the average frequency over the time period of interest.

•	 Interannual Precipitation Variability: The coefficient of variation (ratio of standard deviation to the mean) of annual total precipitation within a time period of interest. 

Temperature
•	 Mean Annual Temperature: The mean of the daily average temperature for each year, averaged over the time period of interest. 

STATISTICAL ANALYSIS 
Historic trends (1990-2023) through time were examined for mean annual temperature and total annual precipitation. For each of these metrics, we used values averaged a number of ways, over the entire country, and over the 
southern and western regions. Linear models were applied to these metrics over time with a significance threshold of p<0.05.
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